Data Science vs. Data Analytics: डेटा साइंस बनाम डेटा एनालिटिक्स, डेटा साइंस व डेटा एनालिटिक्स में से आपको किसे चुनना चाहिए

Safalta Experts Published by: Nikesh Kumar Updated Thu, 06 Jan 2022 03:32 PM IST

Free Demo Classes

Register here for Free Demo Classes

Please fill the name
Please enter only 10 digit mobile number
Please select course
Please fill the email
Something went wrong!
Download App & Start Learning
Data Science vs. Data Analytics इस साल के लोकप्रिय शब्द हैं। लंबे समय तक करियर की संभावना तलाशने वाले लोगों के लिए, बिग डेटा और डेटा साइंस की नौकरियां लंबे समय से एक सुरक्षित शर्त रही हैं। यह प्रवृत्ति जारी रहने की संभावना है क्योंकि एआई और मशीन लर्निंग हमारे दैनिक जीवन और अर्थव्यवस्था में अत्यधिक एकीकृत हो गए हैं। आज, डेटा व्यवसायों के लिए महत्वपूर्ण अंतर्दृष्टि इकट्ठा करने और बाजार में बढ़ने के लिए व्यावसायिक प्रदर्शन में सुधार करने के लिए नया तेल है। लेकिन अंतर्दृष्टि कौन बटोरेगा? सभी एकत्रित कच्चे डेटा को कौन संसाधित करेगा? सब कुछ या तो डेटा विश्लेषक या डेटा वैज्ञानिक द्वारा किया जाता है।

Source: safalta.com

इस क्षेत्र में ये दो सबसे लोकप्रिय नौकरी भूमिकाएं हैं क्योंकि दुनिया भर की कंपनियां डेटा का अधिकतम लाभ उठाने की कोशिश करती हैं। डेटा साइंस और डेटा एनालिटिक्स शब्दों का एक मिश्म है जो एक दूसरे के साथ परस्पर जुड़ते और ओवरलैप होते हैं लेकिन फिर भी काफी भिन्न होते हैं।
 

डेटा साइंस बनाम डेटा एनालिटिक्स: एक ही सिक्के के दो पहलू-

डेटा साइंस और डेटा एनालिटिक्स बिग डेटा से निपटते हैं, प्रत्येक एक अद्वितीय दृष्टिकोण अपनाते हैं। डेटा साइंस एक छत्र है जिसमें डेटा एनालिटिक्स शामिल है। डेटा साइंस कई विषयों का एक संयोजन है - गणित, सांख्यिकी, कंप्यूटर विज्ञान, सूचना विज्ञान, मशीन लर्निंग और आर्टिफिशियल इंटेलिजेंस। इसमें जटिल डेटासेट से पैटर्न निकालने और उन्हें कार्रवाई योग्य व्यावसायिक रणनीतियों में बदलने के लिए डेटा माइनिंग, डेटा इंट्रेंस, प्रेडिक्टिव मॉडलिंग और एमएल एल्गोरिथम विकास जैसी अवधारणाएं शामिल हैं। दूसरी ओर, डेटा एनालिटिक्स मुख्य रूप से सांख्यिकी, गणित और सांख्यिकीय विश्लेषण से संबंधित है।

आईटी हार्डवेयर और नेटवर्किंग में करियर कैसे बनाएं, जानें हार्डवेयर और नेटवर्किंग से जुड़े कोर्स के बारें में
 
जबकि डेटा साइंस बड़े डेटासेट के बीच सार्थक सहसंबंध खोजने पर ध्यान केंद्रित करता है, डेटा एनालिटिक्स को निकाले गए अंतर्दृष्टि की बारीकियों को उजागर करने के लिए डिज़ाइन किया गया है। दूसरे शब्दों में, डेटा एनालिटिक्स डेटा साइंस की एक शाखा है जो डेटा साइंस द्वारा सामने आने वाले प्रश्नों के अधिक विशिष्ट उत्तरों पर केंद्रित है। डेटा साइंस नए और अनूठे प्रश्नों की खोज करना चाहता है जो व्यावसायिक नवाचार को चला सकते हैं। इसके विपरीत, डेटा विश्लेषण का उद्देश्य इन सवालों के समाधान खोजना और यह निर्धारित करना है कि डेटा-संचालित नवाचार को बढ़ावा देने के लिए उन्हें एक संगठन के भीतर कैसे लागू किया जा सकता है।
 

डेटा साइंस बनाम डेटा एनालिटिक्स: डेटा साइंटिस्ट और डेटा एनालिस्ट की नौकरी की भूमिकाएँ- 

डेटा वैज्ञानिक और डेटा विश्लेषक डेटा का अलग-अलग तरीकों से उपयोग करते हैं। डेटा साइंटिस्ट डेटा को साफ करने, प्रोसेस करने और उसकी व्याख्या करने के लिए गणितीय, सांख्यिकीय और मशीन लर्निंग तकनीकों के संयोजन का उपयोग करते हैं। वे प्रोटोटाइप, एमएल एल्गोरिदम, भविष्य कहनेवाला मॉडल और कस्टम विश्लेषण का उपयोग करके उन्नत डेटा मॉडलिंग प्रक्रियाओं को डिजाइन करते हैं।
 
जबकि डेटा विश्लेषक रुझानों की पहचान करने और निष्कर्ष निकालने के लिए डेटा सेट की जांच करते हैं, डेटा विश्लेषक बड़ी मात्रा में डेटा एकत्र करते हैं, इसे व्यवस्थित करते हैं और प्रासंगिक पैटर्न की पहचान करने के लिए इसका विश्लेषण करते हैं। विश्लेषण हो जाने के बाद, वे चार्ट, ग्राफ़ आदि जैसे डेटा विज़ुअलाइज़ेशन विधियों के माध्यम से अपने निष्कर्ष प्रस्तुत करने का प्रयास करते हैं। इस प्रकार, डेटा विश्लेषक जटिल अंतर्दृष्टि को व्यवसाय-प्रेमी भाषा में बदल देते हैं जिसे किसी संगठन के तकनीकी और गैर-तकनीकी सदस्य दोनों समझ सकते हैं। .
 
2022 में फ्रेशर्स और अनुभवी के लिए मार्केट में टॉप साइबर सिक्योरिटी सैलरी
 
डेटा वैज्ञानिकों की जिम्मेदारियां-
  • डेटा की अखंडता को संसाधित करने, साफ करने और मान्य करने के लिए।
  • बड़े डेटासेट पर खोजपूर्ण डेटा विश्लेषण करने के लिए।
  • ETL पाइपलाइन बनाकर डेटा माइनिंग करना।
  • लॉजिस्टिक रिग्रेशन, केएनएन, रैंडम फॉरेस्ट, डिसीजन ट्री आदि जैसे एमएल एल्गोरिदम का उपयोग करके सांख्यिकीय विश्लेषण करना।
  • स्वचालन के लिए कोड लिखना और संसाधनपूर्ण ML लाइब्रेरी बनाना।
  • एमएल टूल्स और एल्गोरिदम का उपयोग करके व्यावसायिक अंतर्दृष्टि प्राप्त करने के लिए।
  • व्यापार की भविष्यवाणी करने के लिए डेटा में नए रुझानों की पहचान करना।
 
डेटा विश्लेषकों की जिम्मेदारियां-
  • डेटा एकत्र करने और व्याख्या करने के लिए।
  • डेटासेट में प्रासंगिक पैटर्न की पहचान करने के लिए।
  • SQL का उपयोग करके डेटा क्वेरी करने के लिए।
  • प्रेडिक्टिव एनालिटिक्स, प्रिस्क्रिप्टिव एनालिटिक्स, डिस्क्रिप्टिव एनालिटिक्स और डायग्नोस्टिक एनालिटिक्स जैसे विभिन्न विश्लेषणात्मक उपकरणों के साथ प्रयोग करना।
  • निकाली गई जानकारी को प्रस्तुत करने के लिए झांकी, आईबीएम कॉग्नोस एनालिटिक्स आदि जैसे डेटा विज़ुअलाइज़ेशन टूल का उपयोग करना।
DevOps इंजीनियर कौन होते है और एक DevOps इंजीनियर के लिए चाहिए कौन सी योग्यताएं
 
डेटा साइंस व डेटा एनालिटिक्स में से आपको किसे चुनना चाहिए?
 
डेटा की दुनिया में आकर्षक करियर बनाने के लिए इच्छुक पेशेवरों का मार्गदर्शन करने के लिए उद्योग के पेशेवरों की मदद से डेटा एनालिटिक्स और डेटा साइंस कोर्स बनाए हैं। डेटा एनालिटिक्स और डेटा साइंस कोर्स के बीच अंतर को अधिक प्रभावी ढंग से समझने के लिए, हम सुझाव देते हैं कि व्यक्ति कुछ महत्वपूर्ण आयामों पर विचार करें जैसे कि उपकरण और तकनीकें जिन्हें इनमें से प्रत्येक पाठ्यक्रम में महारत हासिल की जा सकती है। विभिन्न विश्लेषणात्मक और डेटाबेस टूल का व्यावहारिक व्यावहारिक ज्ञान और विशेषज्ञता होना डेटा साइंस और एनालिटिक्स उद्योग में उत्कृष्टता प्राप्त करने का गुप्त सफलता मंत्र है।
 
डेटा एनालिटिक्स कोर्स डेटा की बड़ी मात्रा में हेरफेर और विश्लेषण करने के लिए एक्सेल और एसक्यूएल जैसे टूल पर व्यापक प्रशिक्षण प्रदान करता है। एक्सेल, एसक्यूएल और पायथन सीखने के अलावा, डेटा एनालिटिक्स कोर्स में विश्लेषण परिणामों को संप्रेषित करने के लिए डैशबोर्ड और विज़ुअलाइज़ेशन बनाने के लिए पावर बीआई और झांकी का उपयोग करने के तरीके पर मॉड्यूल भी शामिल हैं। न्यूनतम या बिना कोडिंग पृष्ठभूमि वाला कोई भी व्यक्ति विश्लेषण सीख सकता है।

 2022 में एथिकल हैकर सैलरी व पात्रता मानदंड
 
वहीं डेटा साइंस कोर्स पूरी तरह से पायथन में पढ़ाया जाता है, डेटा साइंस के लिए पसंद की प्रोग्रामिंग भाषा, और डेटा साइंटिस्ट के टूलबॉक्स में एक आवश्यक उपकरण। सांख्यिकी, मशीन लर्निंग और एनालिटिक्स अनुप्रयोगों के आसपास अपने व्यापक पैकेज रिपॉजिटरी के कारण पायथन डेटा साइंस करने के लिए जबरदस्त लोकप्रियता हासिल कर रहा है।
 
Most Popular Machine Learning Tools Top 5 Machine Learning Companies Pros and Cons of Data Science
Career in Marketing Management Digital Marketing Resume Guide Career in Data Science in 6 Easy Steps
How to Build a Successful Data Analyst Career Digital Marketing and How Does It Work Data Entry Operator Earning

 

Free Demo Classes

Register here for Free Demo Classes

Trending Courses

Professional Certification Programme in Digital Marketing (Batch-11)
Professional Certification Programme in Digital Marketing (Batch-11)

Now at just ₹ 49999 ₹ 9999950% off

Advanced Certification in Digital Marketing Online Programme (Batch-29)
Advanced Certification in Digital Marketing Online Programme (Batch-29)

Now at just ₹ 24999 ₹ 3599931% off

Advanced Certification in Digital Marketing Classroom Programme (Batch-3)
Advanced Certification in Digital Marketing Classroom Programme (Batch-3)

Now at just ₹ 29999 ₹ 9999970% off

Basic Digital Marketing Course (Batch-24): 50 Hours Live+ Recorded Classes!
Basic Digital Marketing Course (Batch-24): 50 Hours Live+ Recorded Classes!

Now at just ₹ 1499 ₹ 999985% off